
Software Engineering

mariaiuliana.dascalu@gmail.com

University POLITEHNICA of Bucharest, Romania
Department of Engineering in Foreign Languages

Software Systems Engineering
• Systems that are composed entirely of software are often considered

"just" software projects, not system projects, and no effort is
expended to develop a systems engineering approach.

• This neglect of the systems aspects of software product development
has contributed to the so-called long-running software crisis.

• (Qs1) Why should we apply SE principles when developing software?
A code-centric approach is not enough? (Reading2 material)

https://www.dropbox.com/s/ymygdyt2gxdtjoc/Reading2.pdf?dl=0
• (Qs2) What is the long-running software crisis? Give an illustrative

example. (Reading3 material)
https://www.dropbox.com/s/3dlxpgjako5razh/Reading3.pdf?dl=0

Aspects of Quality Assurance in SwSE

Fault / defect / failure / error

• Fault (according to ISO/CD 10303-226):
– “an abnormal condition or defect at the component,

equipment, or sub-system level which may lead to a
failure”

• Failure:
– the state or condition of not meeting a desirable or

intended objective
• Defect:

– see fault
• Error:

– the occurrence of an incorrect result produced by a
computer

Examples of defects
• The code has only 3 choices for the city but the design document lists 4.

• A "default" path was tested which would have had the result that an error
message was printed, but because the default clause had been omitted,
no error message was printed, although the data wasn't used.

• When "save" button was selected, the data was lost. Apparently, the data
was being saved to one location and being read from a different one. The
developer had to redo how the data was being accessed.

• When the tester tried to add one more character than the maximum
allowable, an error message was displayed which just showed one word
per line.

Discussion

• How would you classify the previous defects
to the following categories?
– Design quality
– Runtime error
– Data access
– User interface

Discussion

• How would you evaluate the classification
from the previous slide?

• Is it unambiguous? Was it clear to which
category each defect belong?

• Is it overlapping?
• Is it well defined?

• Given answer: [filled in-class]

During the development, a defect can
be in several states

• This list is based on the list of states from Rational Clear
Quest (http://www-
01.ibm.com/software/awdtools/clearquest/):
– Submitted (S)
– Assigned (A)
– Investigated (I)
– Resolved (R)
– Verified (V)
– Validated (Z)
– Closed (C)

• The important thing is that these states change forward
(and sometimes backwards) during the development cycle

States of defects

Orthogonal Defect Classification (ODC)

• IBM defines ODC as:
– a scheme to capture the semantics of each

software defect quickly; it is the definition and
capture of defect attributes that make
mathematical analysis and modelling possible

• is “ORTHOGONAL”

Fundamentals of ODC

• The goal of ODC is to classify defects in order to
improve:
– the time it takes to pinpoint the solution to the problem

• measured by: Time from S -> I
– correctness of the solution

• measured by: e.g. number of new defects introduced by this fix
(fixing one defect might cause several others!)

– time to provide the solution
• Measured by: Time from I -> V

• categories:
– Opening: when the defect was detected
– Closing: when the defect was investigated

Exercise
• For the list of the following defects, please provide

the classification of the Defect Type and explain your
classification.

• Defect 1: User screen should contain a link to the
help. It was found in the test that it did not contain
that link. The developer added the link to the user
screen.

• Defect 2: Algorithm calculating the tax return
returned an incorrect tax return value. After
investigation it was found that the tax return rate
was calculated based on the data from 2008 instead
of 2009.

• Defect 3: The parameter of
CDefectTypeClass.getID(intidType) was 0
(uninitialized) when called from
CExerciseClass.classifyDefects when running the test
case 081222_99_09

Other Schemes

• https://gupea.ub.gu.se/bitstream/2077/3204
8/1/gupea_2077_32048_1.pdf

• http://www.mysmu.edu/faculty/lxjiang/paper
s/wcre12defects.pdf

• …..

Bug Tracking Tools
• IBM Rational ClearQuest
• IBM Rational Quality Manager
• BugZilla
• Mantis
• ….

Instant Mantis

http://www.mantisbt.org/wiki/doku.p
hp/mantisbt:instantmantis_install

Root Cause Analysis (RCA)
• RCA is used to find the root causes of defects – what is the

cause of the failure
• RCA can be done using a number of methods:

– Barrier analysis
– Causal factor tree analysis
– Change analysis
– Failure mode and effects analysis
– Fault tree analysis
– 5 Whys
– Ishikawa diagram
– Pareto analysis

• More:
https://www.dropbox.com/s/ojfz18ncqq3xqjj/Reading4.pdf?dl
=0

5 Whys: Example

• Problem Statement: You are on your way
home from work and your car stops in the
middle of the road. (from www.isixsigma.com)

Ishikawa Diagram: Principles
• Causes are grouped into categories and linked together

(primary and secondary causes)
• The list of categories is not definite, the figure shows the

“typical”

• Relationships are used to
backtrack the cause of a
particular problem.
• The analysis requires
more effort than 5 whys
but still no statistics is
necessary

Example

Exercise

• Imagine the following situation: You are a
quality manager in a software development
project in a new version of the Hyunday i30
car. A new version of the software for the ABS
(Anti-Block System) brakes has been delivered
and it does not work. Please draw the
Ishikawa diagram that would help you do Root
Cause Analysis.

Pareto Analysis: Principles

• Pareto analysis is based on the assumption
that 20% of the units contributes with 80% of
the effect, e.g.:
– 20% of the modules contain 80% of errors
– 80% of failures are caused by 20% of the defects

• The basis of Pareto Analysis is Pareto diagram

Pareto Diagram: Example

What are the most “dangerous” defects according to the
above diagram?

More: https://www.dropbox.com/s/r66fx4mr3i8urxk/Reading5.pdf?dl=0

What we’ve done so far…

• Defined quality management
• Defined the defect
• Looked at different states of the defects…
• It’s obvious we make mistakes and we will

make even more of them…
• So, what do we do with them?
• We cannot fix all of them, so…?

Two groups of defects

• Pre-release defects
– Defects discovered during testing
– Defects which need to be fixed before the release

of the product

• Post-release defects
– Defects discovered by the users after the product

was released
– Defects which need to be addresses via updates

and service releases

Pre-release defects: Typical process

Should we bother
about it at all?

How serious is this
issue?

Have we removed it?

Pre-release defects: Processes

Important to know that the defects have to be prioritized, e.g.

Severity A: Crashing the whole system, impacts the architecture
Severity B: Functionality of the product is affected, fixes do not impact
architecture
Severity C: Somewhat affects functionality
Severity D: Affects performance, not functionality
Severity E: Enhancement request; good to have, but not necessary
Severity F: Question

Important that there changes are controlled

It might happen that fixing one defect might introduce so much change that
the team leaves it as it is and “contaminates” the problem somehow (e.g. by
adding exception handling)

Post-release defects: Reliability theory
• Reliability theory comes from hardware

engineering

Graphs used during defect
management

• Some example of graphs used during defect management:
– Defect Life Time (control chart, priority wise)
– Defect Review Effort (control chart)
– Detection Effort (control chart)
– Cost of Defect (control chart)
– Cost (histogram)
– Defect Life Time (histogram)
– Review Effort (histogram)
– Cost of Defect (histogram)
– Defect Injection Profile, Defect Detection Profile
– Detection Cost (fix cost, regression line)
– Severity (detection effort, regression line), Severity
(fix effort, regression line)
– Defect (fix cost, cumulative graph)
– Defect Arrival Graph, Defect Closure Graph
– Reliability Growth Graph
– Defect Severity (reliability bias bar graph)

• Examples: on Reading6 from the provided
material

Pareto Chart (again…)
• Define categories
• Collect or classify data
• Calculate totals by category
• Calculate percentages
• Chart the results

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

User Keying
Error

Foreign Key
Error

Date
calculation

error

Duplicate
Primary Key

Server time-
out

Run Charts

• Plot of a measured variable in time sequence
• Used to detect “assignable causes" of

variation:

Customer Care Center- Abandoned VRS Calls

35

18

8

12

16

20

24

28

32

36

40

Jul-

99

Aug-

99

Sep-

99

Oct-

99

Nov-

99

Dec-

99

Jan-

00

Feb-

00

Mar-

00

Apr-

00

May-

00

med.

= 24.5

Things to look for:
• Shifts: eight or more consecutive points on one side

of the median or target
• Trends: six consecutive jumps in the same direction
• Patterns: a pattern that recurs eight or more times in

a row

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19 21 23

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19 21 23

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

Histograms
• Histogram - a tally of process output falling into specific

“categories” of continuous data
• Frequency distribution- an estimate of what the entire population

histogram might look like

0

2

4

6

8

10

12

14

F
re

q
ue

nc
y

1500
2500

3500
4500

5500
6500

7500
8500

Strength (psi)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Elapsed days between “trouble” report and resolution

Defect discovery -
Where do the defects come from?

• Techniques for discovering the defects
– Inspections
– Walkthroughs

• How to estimate how many defects remain
undiscovered
– Defect density
– Capture-recapture

