
Software Engineering

mariaiuliana.dascalu@gmail.com

Politehnica University of Bucharest, Romania
Department of Engineering in Foreign Languages



Objectives of the current presentation

• continue with Quality Assurance Management



Defect discovery -
Where do the defects come from?

• Techniques for discovering the defects
– Inspections
– Walkthroughs

• How to estimate how many defects remain 
undiscovered
– Defect density
– Capture-recapture



Software inspections
• Provide a way of structured reviews of software documents

– Involve people examining the source representation with the aim
of discovering anomalies and defects

– Do not require execution of the system, so they may be used
also before implementation

• Are means of verification and validation of software
artifacts

• Can be used for all kind of software artifacts
– Source code
– Design documents
– Requirements specifications
– Test data



Roles in inspections

Role Description

Author/owner Person responsible for the inspected document and for fixing defects
after the inspection

Inspector Finding errors, omissions, inconsistencies in the documents; might
identify broader issues which are outside of the scope of the
inspection

Reader Presents the document during the inspection meeting

Scribe Records the results of the inspection meeting

Moderator Manages the process and facilitates the inspection



Inspection process

Planning

Overview

Individual 
preparation

Inspection 
meeting

Rework

Follow-up

This is when the 
inspection takes 

place…



Planning and overview

• Planning, when the moderator:
– Selects the inspection team
– Organizes the room
– Ensures completeness of materials

• Overview, when the author:
– Presents the documents to be inspected
– Describes the intention of the documents and

their purpose



Individual preparation and inspection 
meeting

• Individual preparation:
– Each individual studies the documents and

identifies defects
• Inspection meeting:

– The team discusses
• The defects found
• The conformance to the standards
• Quality of the document

– The team should not
• Propose solutions
• Recommend changes to the components



Finding defects during individual 
preparation

• Using guided reading (e.g. checklists)
• Checklists

– Group common problems which the inspectors should
look for

– Contain list of types of defects that could be found in
the documents (e.g. inconsistency between models,
testability of the requirements)
• The list is based on the examples from books and from

historical data on defects
– For code inspections, checklists vary depending on the

programming language used



Example checklist

• Correctness



Outcome of the inspection

• Organized list of faults
– Redundant faults are removed
– Conflicting faults are resolved
– All faults are clearly specified



Rework and follow-up

• Rework
– The author makes changes to the document to

remove the defects

• Follow-up
– The moderator decides whether a re-inspection is

required
• If the re-inspection is not required then the moderator

approves the document to be the final release



Pre-conditions for inspections

• A precise specification must be available
– The process of inspections should be prepared

beforehand
• Team members must be familiar with the

appropriate standards
– Team members should know what is a good/bad

documents (e.g. coding standards, architectural styles…)
• Syntactically correct documents must be available

– The document to be inspected should not be a draft
version, but a final one

• A checklist should be prepared
– To guide the reviewers



Efficiency and costs of inspections

• Efficiency
– 500 statements/hour during overview
– 125 source statement/hour during individual

preparation
– 90-125 statements/hour can be inspected during

inspection meeting
• Costs

– Inspecting 500 lines costs about 40 man/hours
effort=> inspection is therefore an expensive
process



• Still, some defects remain undiscovered

• How can we estimate the number of
undiscovered defects?



Defect density: a measure of how 
good the software is?

• Do you think that the number of defects
discovered is a good measure of a quality of a
program/module/component?
– How about small and large components?

• What about defect density?
– Do you think this is a better measure?

DD = no_of_defects/LOC
(number of defects/lines of code)



Capture recapture

• Capture-recapture is a method for estimating
how many defects a given artifact might have:
– Based on statistics
– Can be applied to any software artefact which can be

inspected, tested, etc.

• The basic idea is that:
– we have two independent reviewers
– we perform the QA activity and check how many of

the found faults overlap
– based on the overlap we can estimate how many

faults remain undetected after the QA activity



Capture-recapture: basics from the 
“theory”

• Suppose we perform counting in the population of size N (which is
unknown and we wish to estimate it)

• Suppose we find M organisms, we tag them and release to the
population

• After some time we capture n organisms and see that m of them
have been marked

• We assume that the proportion of the marked organisms is the
same as the proportion of the recaptured organisms:
http://home.comcast.net/~sharov/PopEcol/lec2/caprecap.html

• N/M=n/m = > N=n*M/m



Restrictions

1. The population is closed,
2. animals do not loose their marks during the

experiment,
3. all marks are correctly noted and recorded at each
trapping occasion, and
4. each animal has a constant and equal probability of
capture on each trapping occasion. This also implies
that capture and marking do not affect the catchability
of the animal.



Example of Applying Capture-
Recapture in Software Inspections

The size of the overlap between the sets of faults found by reviewers
indicates the number of faults left: if overlap increases, the number
of defects left decreases.

http://leansoftwareengineering.com/2007/06/05/the-capture-
recapture-code-inspection/



Restrictions

1. Once the document is issued for inspection, it must not
be changed; and the performance of the reviewers
should be constant, i.e. given the same document the
reviewers should find the same faults.

2. Reviewers must not reveal their proposed faults to
other reviewers.

3. Reviewers must ensure that they accurately record and
document every fault they find.

4. All reviewers must be provided with identical
information, in terms of source materials, standards,
inspection aids, etc. and this material must be available
to them at all times.



Testing

• The process of executing a program with intention of
finding errors

• Operating a system/component, under specified
conditions, observing/recording the results and making
an evaluation of some aspect of the system/component
(IEEE)

• Code inspection != testing

• Testing strategies: test entirely (“big bang theory”) vs.
incremental testing (uses stubs)



Testing Methods
• Black-box testing (functional testing) vs. white-box testing

(structural testing)
• Integration testing: top-down, bottom-up
• Interface testing: takes place when modules are integrated
• Stress testing:

– load tests (functional performance is tested under maximum
operational load)

– durability tests (tests are carried out in physically extreme
operating conditions such as high temperature, humidity etc)

• Security testing: access control, backup of files and recovery
in case of system failure, logging of transactions etc)

• Alpha site testing vs. beta site testing
• Manual vs. automated testing with specialized tools (e.g. for

unit testing: JUnit, NUnit, CppUnit…)



What would be some valid test cases 
for the black-box testing? 

• procedure search(Key:ELEM, T:SEQ of ELEM, 
Found:BOOLEAN, L:ELEM_INDEX)

• Pre-condition: T.first()<=T.last()
• Post-condition:

– Found and T[L]=Key
– not Found and not (exist i, T.first() <= i <= T.last(), T[i]=Key)

• Equivalence classes:
– Dates in which the key element is in the sequence (first 

element, last element, middle element)
– Dates in which the key element isn’t in the sequence
– The sequence has one value
– The sequence has more values



Black-box testing example

Input sequence
key Expected results (found, L)



What are the independent execution 
paths for the white-box testing? 



Absence of defects of a product = good 
quality?

• What is a quality process?
• How would you recognize a quality process in

a restaurant?
• How about software development?
• Does the following environments say

something about the quality of the product
produced (food, software)?











The bottom line is…

• Clean kitchen does not necessarily produce tasty food,
but
– we’d rather eat a so-so tasty food from a clean kitchen.

• Good processes does not necessarily develop quality
software, but
– we’d rather fly in Airbus with a software from a well-known

company than a small software development house.

• So, there is a need for quality processes, since they
decrease the risk of companies producing low quality
products.


