
Systems Engineering

mariaiulianadascalu@gmail.com

Politehnica University of Bucharest, Romania
Department of Engineering in Foreign

Languages

Objectives of the current
presentation

• Continue with Quality Assurance

• Quality processes

• Requirements Management

Quality of processes can be ensured by…

Waterfall Software Development Model

Rational Unified Process (RUP)

RUP is a quality process…
Well defined phases
Well defined activites
Well defined tasks
Well defined deliverables
Templates
Team support
Tool support
…

Team Software Process (TSP)

is a detailed process description for small teams,
containing:
details of activities

QA

…

Organizations implementing TSP announced:
productivity improvements of 25% or more

reductions in cost and schedule variance to less than +/- 10%

testing costs and schedule reductions of up to 80%

Capability Maturity Model Integration (CMMI)

CMMI can be used to guide process improvement across a project, a division, or an entire organization

Processes are rated according to their maturity levels

CMMI best practices are published in documents called models, each of which addresses a different area of
interest: development, acquisition, services

Capability Maturity Model describes how good an organization is in its processes

Starts from unpredictable and reactive (ad-hoc) processes

Ends with processes focused on the continuous improvement

http://www.sei.cmu.edu/cmmi/

CMM Levels

Key Process Area (KPA)

•The assumption is that the
more advanced the
organization is => the more
mature its processes are =>
the more difficult KPAs it
implements

Each maturity level has
some associated KPAs

KPAs are from 4 categories:
project management,
process management,
engineering, support

The relationship is:
Maturity level => KPA

Not vice versa!!!

CMMI’s relationship to quality

Level 1 “expects” the following process areas
Quality assurance (PPQA)

Measurement and analysis

Level 2 “expects” the following process areas
Verification

Validation

Level 3 “expects”
Automation, including automated measurement processes

PPQA’s main specific goals related to QA

SG1: Objectively Evaluate Processes and Work
Products
SP1.1: Objectively Evaluate processes

SP1.2: Objectively evaluate work products and services

SG2: Provide objective insight
SP2.1: Communicate and Ensure Resolution of Noncompliance

issues

SP2.2: Establish records

Objectivity: Examples

Examples of measurement data
Estimated/planned vs. actual data on software size, cost, and schedule

Productivity data

Coverage and efficiency of peer reviews

Organization’s measurement program includes
Definition of the organization-wide measurements

Collection of the organization’s measurement data

Analysis of the organization’s measurement data

Quantitative measurement goals for the organization

CMMI Assessment

Checking the CMMI level is done ‘manually’ during an
assessment

Has to be done by an accredited auditor

Is supported by methods like SCAMPI (Standard CMMI Appraisal Method for
Process Improvement)

Practical considerations about CMMI

CMMI is a comparison framework and a descriptive maturity level
framework
If you want to improve your organization, CMMI does not tell you HOW

to do it
CMMI describes areas which the organizations should consider

CMMI level 5 does NOT guarantee that the software will be free of errors
The projects might be on budget, requirements correct, testing correct,

but…
… one needs to know the “Garbage in – garbage out” principle

CMMI is very good and well-known, but not the only framework like this
CMMI is very high level

If an organization wants to focus on a specific area, say QM, then CMMI
is not very helpful

SPICE

SPICE is a major international initiative to support the development of
an International Standard for Software Process Assessment

• http://www.sqi.gu.edu.au/spice/what.html

How to improve processes?

Rational Unified Process has its own
improvement framework:
http://www-01.ibm.com/software/rational/mcif/

Deming’s PDCA: Plan-Do-Check-Act:
iterative problem solving process

Measures of Software Process Quality: Example

Fault-Slip
Through:
this measure helps

to
understand the
efficiency of
testing in each
phase

Conclusions so-far…

“The quality of a product is largely determined by the quality
of the process that is used to develop and maintain it.”
(Shewhart, Juran, Deming and Humphrey), but…

Once the process is of a good quality this does not mean that
the product is of a good quality

No product QA -> no quality

Process is not followed -> no quality

Quality Metrics

According to standard ISO/IEC 15939, measure (i.e. metric) is a
”variable to which a value is assigned as the result of measurement”

“Categories” of metrics:
Simple

Statistics

Key performance indicators (KPI)

Measurement Systems: set of metrics that present the status and/or
progress of a specific area

Can anything/everything be measured?

Can we trust metrics/statistics?

ISO/IEC 15939 (1)

Engineering - Software Measurement Process is
an international standard that defines a
measurement process for software
development and systems engineering:
”This international standard identifies the activities and tasks

that are necessary to successfully identify, define, select,
apply and improve measurement within an overall project
or organizational measurement structure.”

ISO/IEC 15939 (2)

Measurement System: the Principles

Measurement System: the Conceptual Model

An optimal
measurement
information model
has to be defined!!!

Measurement Information Model

“is a structure linking information needs to the
relevant entities and attributes of concern” –
from Annex A (ISO/IEC 15939)

Defines measurement constructs which link
information needs with attributes of entities

Ericsson Example
(*)

(*) A framework for developing
measurement systems and its industrial
evaluation - Miroslaw Staron , Wilhelm
Meding, Christer Nilsson

Main Benefices of Using Measurement Systems

New means of communication: common
language, based on an ISO standard

Automation (data collection, analysis,
presentation)

Reliability (assured by check-indicators)

More on: “Ensuring Reliability of Information Provided by Measurement
Systems” – M. Staron, W. Meding

Examples of Metrics

Metrics for calculating the reliability (as a quality
attribute from McCall’s Quality Model):
average time between failures, average time for recovery

after failures, average downtime per month)

Custom metrics:
for an Educational Recommender System

For a NetTraffic Interpreter

Requirements Management

Preliminary Definitions
• System

– An integrated set of elements, subsystems, or assemblies that accomplish a defined
objective. These elements include products (hardware, software, firmware),
processes, people, information, techniques, facilities, services, and other support
elements. (International Council on SE - INCOSE SE Handbook)

• Systems Engineering

– An interdisciplinary approach and means to enable the realization of successful
systems. It focuses on defining customer needs and required functionality early in the
development cycle, documenting requirements, then proceeding with design
synthesis and system validation while considering the complete problem. (INCOSE)

• Requirement

– specifies a capability or condition that must (or should) be satisfied, a function that a
system must perform, or a performance condition a system must achieve.

• Specification

– group of similar requirements

SE Life Cycle Model
• Partitioned into 3 stages and 8 distinct

phases:

• Concept development

– Needs analysis

– Concept exploration

– Concept definition

• Engineering development:

– Advanced development

– Engineering design

– Integration and evaluation

• Postdevelopment:

– Production

– Operations and support

Source: SE Principles and Practice, A. Kossiakoff & all

• Inputs and outputs
between processes:

Conceptual Design of the System

Types of Requirements

• Operational: describe the overall objectives of the
system

• Functional: describe the tasks that the system should
perform during its operation

• Physical: describe appearance, volume, weight, power,
other general constrains of the system

• Performance: should provide minimal numerical
thresholds for the capabilities of the system

SE Challenge related to
Requirements

• that requirements are consistent (not
contradictory) and feasible

• that requirements have been validated to
adequately reflect real stakeholder needs

• that requirements have been verified to ensure
that they are satisfied by the system design

Definition(s) of quality
• IEEE (IEEE_Std_610.12-1990) defines product quality as:

– the degree to which a system, component, or process
meets specified requirements/ customer or user
needs or expectations

• Pressman(*) defines the quality as:

– conformance to explicitly stated functional and
performance requirements, explicitly documented
development standards, and implicit characteristics
that are expected of all professionally developed
software

(*) Pressman, 2004: Software Engineering: a practitioner’s approach

Requirements Management
Process

• Problem definition

• Current approaches to solving that problem

• Project scope

• Stakeholders and their needs

• System requirements development

• Create traceability between requirements

• Requirements prioritization

• Requirements assignment

• Change management of the requirements

System Requirements
Development

Requirements Analysis
• Is the requirement traceable to a user need or operational requirement?

• Is the requirement redundant with any other requirement?

• Is the requirement consistent with other requirements?

• Is the requirement unambiguous and not subject to interpretation?

• Is the requirement technologically feasible?

• Is the requirement affordable?

• Is the requirement verifiable?

• Does the set of requirements cover all of the user needs and operational
requirements?

• Is the set of requirements feasible in terms of cost, schedule, and technology?

• Can the set of requirements be verified as a whole?

Objectives tree

Operational Effectiveness Model
• Used in estimating the degree to which a

given system concept may be expected to
meet a set of postulated operational
objectives

• Based on

– a mathematical model of the operational
environment: a set of scenarios – postulated
actions that represent a range of possible
encounters to which the system must react

– the candidate system being analyzed

Measure of Effectiveness (MOE)

• Definition: a metric of a system’s overall
performance that indicates the degree to
which it achieves it objectives under specified
conditions.

• Components:

– The metric itself

– Its units

– The context under which the metric applies

Exercise

• For the effectiveness analysis of a sport utility
vehicle (SUV), list 5 most important product
characteristics that should exist and be
measured in the analysis.

• For one of the characteristics, describe an
operational scenario for obtaining a MOE.

Analysis of Alternatives
• Definition of a range of alternative system approaches to the general

operational mission and a comparative evaluation of their MOE

• Steps for defining alternative concepts:

– start with the existing system as a baseline

– partition the system into its major subsystems

– postulate alternatives that replace one or more of the subsystems
essential to the mission with an advanced, less costly, or otherwise
superior version

– vary the chosen subsystems singly or in combination

– consider modified architectures, if appropriate

– continue until you have a total of four to six meaningful alternatives

Formulation of
performance
requirements

Important Aspects to Requirements Management
Requirements:

• provide early assurance that all top-level requirements are fully satisfied in the product, with traceability to where
they are satisfied

• prevent unintentional addition of cost (avoid ‘gold plating’)

• establish clear responsibility for requirements implementation

• provide clear visibility across teams into requirements allocation and cross-functional interactions

• easily and quickly assess the impact of changes to requirements

• provide data for early and thorough validation and verification of requirements and design artefacts

• avoid unpleasant downstream surprises

Well-stated requirements exhibit the following attributes:

• The requirement is Necessary: What would happen if you didn’t include this requirement?

• The requirement is Verifiable: How will you know you have met the requirement?

• The requirement is Attainable

Tools for Requirements
Management

• IBM Rational Doors: http://www-142.ibm.com/software/products/us/en/ratidoor

• aNimble: http://sourceforge.net/projects/nimble/

• http://www.incose.org/productspubs/products/rmsurvey.aspx

http://rmblog.accompa.com/2012/05/requirements-management-tools/ (4 groups of
tools: enterprise-level, mid-market, entry-level, open-source)

Modeling Requirements with
SysML

Document-based SE vs. Model-
based SE

• Document-based SE:

– the generation of textual specifications and design documents, in hard-copy or
electronic file format, that are then exchanged between customers, users,
developers, and testers

• Model-based SE:

– the formalized application of modeling to support system requirements,
design, analysis, verification, and validation activities beginning in the
conceptual design phase and continuing throughout development and later
life cycle phases

Systems Modeling Languages

• Traditional models, based on structured analysis and design (SAAD):

– focus on functions and standard block diagramming techniques

– use the top-down decomposition of the system

• Models based on object-oriented analysis and design (OOAD):

– focus on entities

– use the bottom-up approach

SysML
• A graphical modeling language in response to the UML for Systems

Engineering RFP

• developed by the OMG (Object Management Group), INCOSE and
AP233 Working Group for ISO

• a UML Profile that represents a subset of UML2 with extensions
(explained later-on)

• supports the specification, analysis, design, verification, and
validation of systems that include hardware, software, data,
personnel, procedures, and facilities

• a visual modeling language that provides semantics (meaning)
and notation (representation of meaning)

• not a methodology or a tool

The SysML Language Specification

• available since September 2007

• defines the SysML language concepts used to
model systems

 derived from the Unified Modelling Language

http://www.omg.org/spec/SysML/1.2/

The Architecture of SysML

• Domain concepts

• Meta-model: mapping of domain concepts to
language concepts

• User-model: instantiation and representation
of the language concepts as they apply to a
particular system

Meta-model

• A profile in UML is the
mechanism used to customize
the UML language.

• A profile contains stereotypes,
which are used to extend the
meta-classes from UML to
create new/modified concepts.

• The SE extensions to UML in
SysML are described using a
profile called the SysML profile.

Fragment of SysML profile

User-model

Relating real-world concept to user-model concepts:

SysML Diagram Taxonomy

Diagram Frame

• Activity diagram-act
• Block definition diagram-

bdd
• Internal block diagram-ibd
• Package diagram-pkg
• Parametric diagram-par

Requirement diagram-req
Sequence diagram-sd
State machine diagram-stID
Use case diagram-uc

Model Element Type
• Activity diagram-activity control operator

• Block definition diagram-block, constraint block, package, model, model
library

• Internal block diagram-block

• Package diagram-package, model, model library, view

• Parametric diagram-block, constraint block

• Requirement diagram-package, model, model library, requirement

• Sequence diagram-interaction

• State machine diagram-state machine

• Use case diagram-package, model, model library

Other Notations

• Tables, matrices, trees (for large amount of
information)

SysML Requirements Diagram
• SysML can be used to model text-based requirements and relate them to

other requirements and to other model elements.

• Reqs Diagram

– provides a bridge between the text-based requirements that may be
maintained in a requirements management tool and the system model

– keeps the requirements sync with the system model, assuring
traceability through out the system lifecycle

– header:

req [package or requirement] Model Element Name [diagram name]

• Requirements can be customized by adding additional properties such as
verification status, criticality, risk, and requirements category.

• An alternative method for creating requirements categories is to define
additional subclasses of the requirement stereotype (e.g.
<<extendedRequirement>>, <<functionalRequirement>>,
<<performanceRequirement>>, <<physicalRequirement>>,
<<designConstraint>> , <<interfaceRequirement>>)

Types of Requirements Relationships
(1)

Types of Requirements Relationships (2)

Relationship name Keyword depicted
on relation

Req callout Client callout

Satisfy «satisfy» Satisfied by
« model element»

Satisfies
«requirement»

Verify «verify» Verified by
«model element»

Verifies
«requirement»

Refine «refine» Refined by
«model element»

Refines
«requirement»

Derive requirement «deriveReqt» Derived
«requirement»

Derived from
«requirement»

Copy «copy» (None) Master
«requirement»

Trace «trace» Traced
«model element»

Traced from
«requirement»

Modelling a Requirements
Containment Hierarchy

• The containment relationship is used to represent how a
complex requirement can be partitioned into a set of simpler
requirements without adding meaning or other implications.

• A containment relationship can be viewed as a logical and-ing
(conjunction) of the contained requirements with the
container requirement.

• The partitioning of complex requirements into simpler
requirements is essential to establish full traceability and
show how individual requirements are the basis for further
derivation, and how they are satisfied and verified.

The Browser View of a
Containment Hierarchy

Relations between Reqs and Other
SysML Elements

• shown directly (if all the elements
are in the same diagram)

 shown by using the compartment or
callout notation (if the elements are
not in the same diagram)

• the arrow points from the
dependent model element (called
the client) to the independent
model element (called the
supplier): the camera design is
dependent on the requirement,
meaning that if the requirement
changes, the design must change

Depicting Rationale for
Requirements Relationships

• A rationale is a SysML model element that can
be associated with either a requirement or a
relationship between requirements.

• The rationale is intended to capture the
reason for a particular design decision.

Depicting Requirements and their
Relationships in Tables

Exam Question

• What aren’t requirement relationships in SysML?

– Implement (check)

– Refine

– Satisfy

– Extend (check)

SysML Tools

• Open source:

– Modelio

– Papyrus

• Comercial:

– Magic Draw

– Rational Rhapsody

– Visual Paradigm

– Astah

– Sparx System Enterprise Architect

Modelio (with SysML Architect Module):
http://www.modelio.org/

Visual Paradigm: http://www.visual-paradigm.com/ (trial version:
http://www.visual-paradigm.com/download/vpuml.jsp)

AstahSysML: http://astah.net/editions/sysml

Overview of AstahSysML:
http://astah.net/tutorials/sysml/astah-window

