Systems Engineering

mariaiulianadascalu@gmail.com

SysML Diagram Taxonomy

SysML Diagram

A

Behavior
Diagram

i

: Requirement
: Diagram
.

Structure
Diagram

Activity
Diagram

Sequence
Diagram

State Machine
Diagram

Use Case
Diagram

Block Definition
Diagram

Internal Block
Diagram

Package Diagram

Same as UML 2

Modified from UML 2

| P WY

MNew diagram type

.

[\

Parametric
Diagram

Content

e Parametric models

 Modeling behavior

Parametric Models

Used do capture constraints on the performance and
physical properties of systems

The constraints are expressed as equations whose
parameters are bound to the properties of systems

Used to make analysis (trade-off studies, design
optimization,...)

Supported by SysML through constraint blocks:

— a special kind of block used to define equations so that they
can be reused and interconnected
— have 2 main features:

* a set of parameters
* an expression that constrains the parameters

* Bdd

Defining constraints with...

bdd [Package] Power Analysi_s)

«COnstraint»
Power Distribution

conslrainis
pe : Joule's Law
ps:PowerSum

parameters

component demands : W [0..7]

currernt : A
voltage : V

)

PS .y

aCcmstraints
Joule’s Law

«00nstraints
Power Sum

constrajnts
{power = current*voltags]

paramaters
current ; A
voltage - V
power : W

constraints
Hotal power = sum
{eomponent demands)}

paramelers
component demands : W [0..*]
total power ;W

* Parametric diagram

Parametric diagram

* Creates systems of equations that can constrain the
properties of a block

e Header:

par [model element type] model element name [diagram
name]

i par [Consiraint Block] Power Digtfibutiunj— . -

- —

X !
compenent demands : W [0..% ps : Power Sum

—t

j component demands : W [0..7]

H total power 1 W

L

[_ L power: W

pe: Joule's Law ' I

|| current : A :
e | voltage : v ‘
voltage @ W S '

| current : A

Using Constraint Expressions to
Represent System Constraints

e SysML includes a generic
mechanism for expressing
constraints on a system, not a

oy . . ‘{MA’TLAB}::—d L}I\;\"
build-in constraint language to
evaluate the constraints

Elt;:;ch |) Elur:kz]
consirainis v.::!.l'm.?%
e The definition of a constraint _.mfvala}h*g}; S:Hnﬁlti*]]
can include the language used |a.imeger | (2P0

to enable the constraint to be |P:lnteger
evaluated

 Constraints may be owned by
any element in a namespace

Encapsulating Constraints in Constraint

Blocks
e Why?

— To enable reuse

bdd [Fackage] Constraint Examples [Twe Diflerent Constraint Biocks]]

wconstraint»

Rate Monotonic Maodel aonstraint:
I constrainis Real Sum
4 i —
i C/ - o1 consfrainis
! (W _,_E; _/rr._'”fﬂ 2—1} {sum == plus{operands)}
| {size(T) = n & size(C) = r} parameters
E operands : Real [* L
paramatars SEH‘I : Real i

i T:Real [*]{ordersd, unigue}

U ; Real

C : Real ['] {ordered}

1 Integer

/

Constraint
expression

Constraint
parameters

Using Composition to Build Complex
Constraint Blocks

* Modelers can compose complex constraint
blocks from existing constraint blocks on a bdd

_b F'd [Package] Power Analysi%j

«0onsiraint=
Power Distribution

consirainis
pe :Joule's Law
ps : Power Sum

pararmeters
component demands - W [0..*]
current : A

volizge : vV

Pe i, . Ps |,
«constraints sgonstraint=
Joule's Law Power Sum
constraints consiraints
{power = current*voltage)} : {total power = sum
i (component demands)}
parameters S S
current : A parameters
voltage : V { componant demands : W [C..%]
powar : W I total power : W

Using a Parametric Diagram to Bind
Parameters of Constraint Blocks

A bdd is used to define constraint blocks
but

* A parametric diagram represents the usage of
constrain blocks in a particular context (similar
to the usage of blocks as parts in an ibd)

Example par (1)

| bdd [Package] Parametric Example]

=constraing

K
paramelors |
a : Real
b : Req!
t : Real
d : Real
K : Real _
' 1
I L L B L R L.
«mnit;aintn «ccllémiraini» «ponsiraints
1=K2 K2
| {Kic:nn:?:;nm , _cﬂsf:{mms B " conskainfs
! = = K1*'K2} K2 =c'd}
paramefers parameters pararmatars
a: Real K1 : Real . : ¢ Real
b : Real K2 : Beal i d: Real
I’{*I : Real E K : Real) K2 . Real

Binding
connector

Example par (2)

par [ConstrainiBlock] ig

- T LA
eqt : Ki
b a a = ;¥
e : j (K1=a b}]
— | S
— b o 1 ki |
4 -,
, K1 !mlﬂ

o
T K = KK

L]
o
a
[LT L]
o
R
[}
2,
e

@E G

Example par (3)

par [ConstraintBlock] Power Disln‘hution)

“ps-. Power Sum
component demands : W [(..7]
]

! "] component demands : W [0..7]

i—l total power : W

" A

e L

' L | pawer ;W 1
- current © A | pe:Joule’s Law

j : ————————————— | current:A

j £ i . - _:I \'Qﬁagﬂ . '|u|'

voltege : V b J

Constraining Value Properties of a

In a bdd, draw
composite

associations between
the block whose
values are being
constrained and the

required constraint
blocks

In a par, the block
represents the
enclosing frame and
the constraint
properties represent
usages of the
constraint blocks

Block

par [Block] Mechanical Power Subsystam [Power Distribution]

demand equation
: Power Distribution

voliage : V z

current : A :

compecnent demands © W {0.."] E

c:W['E;..*]

POWEr SOUrce

voltage : V

—L 1 current: A —!

———————————

i
8
< =
)
2
@

iris motor

bl
I
|
f
f
|
I
I
|
i i - 1 ar a m s d,l pd LE

power W

e o i . -

Summary so far

Constraint blocks can be defined in model libraries to facilitate specific types of
analysis (performance, weight, thermal etc)

Constraint blocks can be used by blocks to constrain the values of their properties
Constraint properties are usages of constraint blocks

Constraint properties bind to one another and to the value properties of blocks
through parameters in parametric diagrams, using binding connectors

An analysis context is a block that provides the context for a system or component
that is subject to analysis:

— Constraint blocks

— References to the system being analyzed (the frame of the par)

The analysis context can be passed to an engineering analysis tool to perform
computational analysis

Form of analysis: trade studies (compare alternatives)

References

* http://astah.net/tutorials/sysml/parametric

* http://astah.net/resources/documents/SySML
-Tutorial.pdf)

Modeling Behavior in SysML

with activities (flow-based behaviour)
with interactions (message-based behaviour)
with state machines (event-based behaviour)

with use cases

SysML Activity Diagram

 an activity is a formalism for describing
behaviour that specifies the transformation of
inputs to outputs through a controlled
sequence of actions

* an activity diagram is a representation for
modelling flow-based behaviour

* header:
act [Activity] activity name [diagram name]

Actions-The Foundation of Activities

 an activity decomposes into a set of actions that
describe how the activity executes and transforms its
iInputs to outputs

* an action processes tokens placed on its pins. Tokens
on input pins are consumed, processed by the action,
and placed on output pins for other actions to accept.

e
4 a7 -
requilred input [1] E E required output [1..7]

|
optional input [0..1] Ek | aptional outpiut [0..*]

-

a

Parameters

e areinputs/outputs of activities

* each parameter may have:
— atype
— adirection
— a multiplicity
— a stream or not

act Cperate Camera [Activity mee_]f)

=optonals

config : Configuration Data MPEG output : MPEG4[0..1]

el ; {straarm, direction = out)
=gphional =aptianal=
current image : Light{0..1] composite out : Compaositef0..1]
{stream, direction = Inj) {stream, direction = aul}

Call Behavior Actions

Invokes a behavior when it executes

The called behavior is an activity/other types of SysML behavior

 The call behavi
number and type,

ction owns a set of pins that mush match, in
ameters of the invoked behavior

! act Operate Camera [Object Flaws] /J

l (1] I, H |=
i M(}Flfléﬂéunjljtput roptionls |
! wopionals Isireamy MPEG cutput |
: _ S\ L video out ’ . {straam) |
wroptional= : Collect Images rgptional- : Capture Video \: Generate s
current image sopional: capdured image : | ! Video Qutputs [~ |
[stroam)} axt image {stream} {slream) |-|-| ' r|— o il

‘ Pl ' sgpiionals
input signal septional> Lo omposite out

Istream) composiia {straamn}

cut {streami

Objects Flows

 Used to route input/output tokens that may
represent information and/or physical items
between object nodes (=parameter nodes and

pins)

 Shown as a line connecting the source of the flow
to the destination of the low, with an arrowhead
at the destination

e Spot the object flows in the previous example

Routing Object Flows

A fork node has one input flow and more than one output flow-it
replicates every input token it receives onto each of its output flows.

A join node has one output flow and more than one input flow-its
default behaviour for object flows is to produce output tokens only when
an input token is available on each input flow.

A decision node has one input and more than one output flow-an input
token can only traverse one output flow.

A merge node has one output and more than one input flow-it routes
each input token received on any input flow to its output flow. Unlike a
join node, a merge node does not require tokens on all its input flows
before offering them on its output flow: it offers tokens on its output
flow as soon as it receives them.

Fork and join symbols are shown as solid bars, typically aligned either
horizontally or vertically. Decision and merge symbols are shown as
diamonds.

What type of nodes do we have here?

= Y ajoinSpeaciication:
Flovwr 4 | | liflow 1 & flow 2} | [flow 2 & flow 3)) |
o
5 flow 2 % y
Mo 3
act Handle Status Fi&qu&silj —
: Create Error | :
: Request Camera Status String afror string
i____r—:‘ﬂ{: arrar
dwﬁﬁ = r{Luiagmam
(8] b /
camera id : integer 3 | camera numbar = r : smiagn:g;q =
power stafus B : Cr&ata_ Status :
current moda ;ﬁ String
power
* £ current slatus status siring
- ,

Control Flows

 Can be represented by using a solid (or dashed
line) line with an arrowhead at the destination

* All the constructs used to route object flows can
also be used to route control flows to represent
control logic (e.g. join, merge,...) +
— Initial node

— Activity final node @
— Flow final node @

Example

pas

1
| [Couni===roisne
| sl

[{1]s] JUSSS——

o)

L B ———

Control Operators

* Special behaviors which produce control
values via an output parameter -
ControlValue, which enables/disables an
activity

Signals

* Can be accepted by an activity, using an
accept event action

* Can be sent, using a send signal action

* An accept event action can accept other kind
of events:

— Time events

— Change events

Time event

Change event

Examples

act Produce Test Signal |

tast in

S | 7 —

|3"~| inkit {eoerned}

£y K—}L{aﬁ:ﬂanﬁuMTﬁt sign_}]—--»—
after (0.5) time hast

. dairagm} soarAniiparaiors
!"_'T:?w ——= | ai2:Convert Bool
B '?f‘ 1est valuo to Control
{sfream "~ Llcontrolout
-------- {contral}

— test signal : Video

Esgngl
{stresami) IB‘IJ"BHm]
__—| MPER Frame |
acl Transmit MPEG _I_'_I
e _ j
| EL e A
| r-mﬂFnuur

1
|
i
¥
i
a
H
]
x
frame |
- E

Activity Hierarchy

. bdd [I;ac;:ag;] Behavior [Example of ;I:lru'lt'_l.r I'.'IE{:-;:umpu':EitiEn] P

activityw |
Generate Video nuipuEi

— — _’—_——\.

al ad
TR S : y s
[wgCihityw J | =activity» sty ! |I waCiivityn f :
F Convert to Composite Produce Test Signal Encode MP
Process Frame pos f uc .i. £y} | SRR EG E

SR E—— S S ST S T e — e e e e e ey — — —

e]

Relating Activities to Blocks

e Use an activity partition(swimlane) to assert
that a given block (or part) is responsible for
the execution of a set of actions:

— A rectangular which contains the set of actions
and has a header containing the name of the
header/model responsible for the actions

 Make a block to own an activity and use this
as a basis for specifying the block’s behavior:

— Use accept signals to connect the block with the
activity

Example with SW|mIane

™ s - e ————— —— — e

li-u.t'l Pdrnun! Tracking o o

I—

o — T e ——— ——

'“':a-hhu.:. thp-l

[Tt it camadm) [k |
l'lll'ﬂl!l-l' Bzl M‘lﬂﬂl_'llﬁlfw

Hn‘ﬁ -.l-h-li'l.’:\‘l

security guard: -
farsed Jperaior

I'le..umnﬁl- « LI_I h‘rﬂlmm ward

=] |
|

E% hmri:} Iumhmﬂumi mﬂh | T c'm :'} i
| . oo Pincenen > |

(b g]

Summary of Activities

An activity represents a controlled sequence of
actions that transforms its inputs to its outputs

Inputs and outputs are called parameters
Activities are composed of actions

Actions consume input tokens and produce
output tokens via pins

Actions are connected by flows:

— Object flows: route tokens from input to output pins

— Control flows: transfer control from one action to
another

SysML Sequence Diagram

* models how parts of a block interact by
exchanging messages or how the system interacts
with the environment

* a3 message can represent the invocation of a
service on a system component or the sending of
a signal (synchronous vs. asynchronous)

 Header:
sd [Interaction] interaction name [diagram name]

Example

Iidcnmcw; [Simple Sequence])
Lifelines | | u-nuriwﬂlﬂdlihh! Advanced Operator £ m-mmqn-:n:hmﬂhnusm
\ l aﬁhdnarr-m{un'nm-d "CCcC1Y) 11
¢t current status() 4_
= o got status
| \L_ (camera id = *CCC1")
ll | ' get status{):"OK*
L: mtmmlsﬁm’ﬂ{}_ﬁ_“““"_"_f ----- -
1 pan camera(strength = 2) J
I i
" get current stalusi)
- _'L""Wuﬂtﬂnlﬂ
1 L...---
| | ' get status():* Moving®
getcurent satus(Wov0gt e
- |
1 |

State Machine Diagram

* Describes the state-dependent behavior of a
block throughout its lifecycle in terms of its
states and transitions between them

e Header:

stm [State-Machine] state machine name
[diagram name]

Example

P T T a ; - -Jl —.ﬁ
| stm Manualy Monitor Enwr-:-rnm-&rdf

[operator idle J

-'l'.

IrMruder Alert! Cancal Alert/
Rales Alamm | lﬂEI‘I:IZE| Alarm

!

! [intrucer pu.s-.--r-t) _}

| do / Manually Track Intruder %
I o !

':l 2

Auto Track Lest Track

| e B]

| automatic tracking
| | enabled l

Example

e

Syalam
KO

“atm Surveillance System | '

s
(@
T Off
i W [r == "Yas

n Shat Dewn Camaras

after (605)
Display "Timed Out® Slatus

initalizing |

[imig O]

It init OK]

Confirmation
Responsa SR e ol
E W { shutting down |
i3 -
—— ¥ E‘hl..nljmlull'l
== "N e iogged omy
] Confirm
i Shusdown
; Reguest
wy
operating
antry/Display "Operating” Status
daitanitor Site

axit/Display "Shuldown® Status

Use Case Diagram

describes the functionality of a system in terms of how its users use
that system to achieve their goals

the frame is a package or block, containing:
— Set of actors
— Use cases

— Relationships
* Actor-use case

* Use case-use case
— Inclusion
— Extension
— Classification
— Descriptions (as notes): conditions that must occur for the use case to
begin, postconditions,...

Header: uc[model element type] model element name [diagram
name]

Example

| P Packege] Use Gasos [Compiote] =

| Candition: {camess 1aul detscied)
| Stengion paint; Faul

Surveillance System E
:E%:" —__Handie Camara Fault }_,..;-""J %
E‘#ml __--'- 1:' L]

wgutands | [e

